電源設計技術資訊網站

電源設計支援工具   English   简体中文   日本語   한국어

2017.10.12 傳送函數

所謂開關的傳遞函數:基礎降壓模式轉移函數的導出

DC/DC轉換器:對各控制系統轉移函數的共通化

本章將思考截至目前為止所導出的公式,首先導出降壓模式的切換轉移函數作為基礎,其次使用狀態平均法導出非動作模式獨特的標準化轉移函數。

簡單來說,我認為這是最難解也最難想像的轉移函數。因此,一開始將本章的流程事先彙整於圖1。

一聽到狀態平均法,想必有許多人並不是很清楚。不過,若能使用此方法的話,便可以藉由統一程序來導出各轉換器的轉移函數。我會盡量以淺顯易懂的方式說明,希望大家能嘗試挑戰看看。

G3轉移函數的導出、頻率特性

一開始,有必要先回想切換式穩壓器各功能的區塊。在這裡,首先導出切換區塊的G3相關轉移函數。

首先,求。請看圖2。

這是降壓模式的切換式波型。VSW由於SW端子可以記述為H(VIN),當作L(O)的時間平均,因此

在公式4-1中,若D→D+∆D、VSW→VSW+∆VSW,則可以導出下式。

此結果如右圖所示,G3表示Gain固定且相位不變。

G4轉移函數的導出

接著求輸出功率的濾波器區塊﹙filter block﹚,即G4。請看圖4。

這是從VSW經由LC滤波器與Vout連結的路徑。從VSW來看,Vout可以想成是L和Ztotal的阻抗分割,因此可以導出以下公式4-2。

在這裡,我想以此G4的轉移函數為基礎來思考2個例子。

例1

若RESR=0、R=open(∞) 時,則G4如下。

這是常見的LC濾波器,波德圖則為右圖。我想應該可以立即想像。

當f小時G4為正(>0)値,所以Phase經常為0。

當f變大到時,由於分母為0,故Gain會散發。

又,f變大時,由於G4為負(<0)値,故Phase為180°。

例2

當例1附加RESR和R時,分母會加上1次虛数。當f十分小或f十分大時,雖然會與例1相同,不過由於在f的共振點四周分母無法為0,故Gain不會散發。

此外,在這裡為了保留1次虛数,並非使相位為0→180°,而是變化成0→90°→180°。若以波德圖顯示,則為圖6。

G4的轉移函數和波德圖的關聯應該可以想像了吧。

TOTAL轉移函數(降壓電壓模式一般式)

從這裡開始將以截至目前止所導出的轉移函數來求整體的TOTAL轉移函數。TOTAL轉移函數如先前所說明的,可以用以下公式來表示。

以此為基礎可以列舉出G的公式。

此公式的波德圖如圖7,可以看到各區塊的特徴。公式的顏色分類和圖表的領域框色互相吻合。

像這樣,若每一區塊記述轉移函數並建立公式的話便可以畫系統波德圖。不過,在這之前的論述由於皆簡單提及以便能進入情況,因此有不嚴密的部分。亦即G3和G4的導出部分,思考方法雖然適用於降壓模式,但卻無法適用於升壓及升降壓模式。因此,有必要採取可適用這些所有模式的狀態平均想法。

Power Supply Design Technical Materials Free Download

Power Supply Design Technical Materials Free Download