DC-DC|Design
Inductor Selection
2017.04.27
Points of this article
・Inductor selection is extremely important in DC-DC converter design.
・The circuit operation, current paths, and the relation between the inductor and the output current must be understood.
When designing a step-down DC-DC converter, inductor selection is important. Inductor selection greatly influences performance and characteristics. The procedure for inductor selection and the method for calculating inductances and the like are basically indicated on the data sheets of the power supply IC that is used.
Inductor selection procedure
First, the procedure to use when selecting an inductor is described.
1)Calculate the required inductance L.
2)Calculate the maximum current flowing in the inductor (output current + one-half of the ripple
current).
3)Select an inductor having the calculated value L (or a value close to it) and with an inductor
saturation current at least as great as the calculated maximum current.
※In the event of a short-circuit or transient state, there are cases in which a current greater than
the calculated maximum current may flow; hence another method is to select the inductor based
on the maximum switch current.
In essence, the margin is considered and determined based on calculations. The method for determining the margin depends on the design rules of the company and empirical rules.
1)Inductance calculation
First, the following equations are used to calculate the inductance.
2)Calculation of the maximum current of the inductor
Next, the maximum current of the inductor is calculated according to the following equation.
As is clear from the equations and the current waveform, ILPEAK is equal to one-half of ΔIL with IOUTIOUT added.
From the calculated inductance and maximum current of the inductor, an inductor is selected having approximately the calculated inductance and a saturation current at least as large as the maximum current. Below an example of selection is described.
Example of Inductor Selection
Conditions: VIN = 12V, VOUT = 3.3V, IOUTIOUT = 2A, r = 0.3, f SW = 380kHz
From the above results, the starting point will be an inductor of 10 μH, with a saturation current of at least 2.3 A. “Starting point” means that these calculations are not absolute, and modifications may be necessary when such things as short-circuits and transient states are taken into consideration.
Inductor Current when the Inductance is Changed
Here, in order to deepen our understanding of inductor operation, we explain the changes in the inductor current when the inductance is changed. The following chart shows ILPEAK when the inductance is set to 0.4 μH, 1 μH, and 2.2 μH, under the same operating conditions.
As is also clear from the equation, when the inductance L is smaller, ILPEAK increases, and a larger superimposed direct current can be accommodated. However, the increase in ILPEAK necessitates tolerance of a larger superimposed direct current. If the inductance is made larger, the reverse applies, and there is the need to study phase compensation.
【Download Documents】 Switching Regulator Basics
The basics of step-down switching regulators, including their operation and functions, are explained. Comparison with linear regulators, synchronous rectification and diode rectification, control method, auxiliary functions, etc. are also explained.
DC-DC
Basic
- Operation During Shutdown of a Boost DC-DC Converter
- Linear Regulator Basics
-
Switching Regulator Basics
- Types of Switching Regulators
- Advantages vs Disadvantages in Comparison with Linear Regulator
- Supplement-Current Paths during Synchronous Rectifying Step-Down Converter Operation
- Operating Principles of Buck Switching Regulator
- Differences between Synchronous and Nonsynchronous Rectifying DC-DC Conversion
- Control Methods (Voltage Mode, Current Mode, Hysteresis Control)
- Efficiency Improvements at Light Load for the Synchronous Rectifying Type
- Protective and Sequencing Functions
- Considerations on Switching Frequencies
- Behavior when Vin Falls Below Vout
- Supplement-Protective Function: Output Pre-bias Protection
- Seven Representative Power Supply Circuits: From Low-noise to Boost Specs
- Concluding Remarks
Design
- Overview of Selection of Inductors and Capacitors for DC-DC Converters
-
Overview of DC-DC Converter PCB Layout
- Ringing at switching nodes
- Placement of input capacitors and output diodes
- Placement of Thermal Vias
- Placement of Inductors
- Placement of Output Capacitors
- Feedback Path Wiring
- Ground
- Resistance and Inductance of Copper Foil
- Noise countermeasures: corner wiring, conducted noise, radiated noise
- Noise countermeasures: snubber, bootstrap resistor, gate resistor
- Summary
-
PCB Layout of a Step-Up DC-DC Converter – Introduction
- The Importance of PCB Layout Design
- Current Paths in Step-up DC-DC Converters
- PCB Layout Procedure
- Placement of Input Capacitors
- Placement of Output Capacitors and Freewheel Diodes
- Inductor Placement
- Placement of Thermal Vias
- Feedback Path Wiring
- Ground
- Layout for Synchronous Rectification Designs
- Resistance and Inductance of Copper Foil
- Relationship Between Corner Wiring and Noise
- Summary
Evaluation
- Overview of Characteristics and Evaluation Method of Switching Regulators
- How to Read Power Supply IC Datasheets: Cover, Block Diagram, Absolute Maximum Ratings and Recommended Operating Conditions
- Evaluating a Switching Regulator: Output Voltage
-
Introduction
- Definitions and Heat Generation
- Losses in Synchronous Rectifying Step-Down Converters
- Conduction Losses in Synchronous Rectifying Step-Down Converters
- Switching Losses in Synchronous Rectifying Step-Down Converters
- Dead Time Losses in Synchronous Rectifying Step-Down Converters
- Controller IC Power Consumption Losses in a Synchronous Rectifying Step-Down Converter
- Gate Charge Losses in a Synchronous Rectifying Step-Down Converter
- Conduction Losses due to the Inductor DCR
- Example of Power Loss Calculation for a Power Supply IC
- Simplified Method of Loss Calculation
- Heat Calculation for Package Selection: Example 1
- Heat Calculation for Package Selection: Example 2
- Loss Factors
- Matters to Consider When Studying Miniaturization by Raising the Switching Frequency
- Important Matters when Studying High Input Voltage Applications
- Important Matters when Studying Large Output Currents Applications: Part 1
- Important Matters when Studying Large Output Currents Applications: Part 2
- Summary
Application
-
Important Points in the Design of a Power Supply Using a Linear Regulator
- Typical Application Circuit Examples of Linear Regulator ICs
- Input/output capacitor design and ripple prevention for linear regulator ICs
- How to determine efficiency and Thermal design for linear regulator ICs
- Protection of Linear Regulator IC Terminals
- Soft Starting of a Linear Regulator IC
- Overcurrent Protection(OCP) and Thermal Shutdown(TSD) of Linear Regulator IC
-
Important Points in the Design of a Power Supply Using a Floating Type Linear Regulator
- Example of Power Supply Circuit Based on a Floating Type Linear Regulator IC
- Input/output capacitor design and ripple prevention for linear regulator ICs
- How to determine efficiency and Thermal design for Floating Type Linear Regulator ICs
- Terminal protection for linear regulator ICs
- Startup characteristics for linear regulator ICs
- Failure to Start of a Power Supply Using a Linear Regulator, Case 1: Damage to the IC and Peripheral Components Due to Hand-Soldering
- About Parallel Connections of LDO Linear Regulators
-
Introduction
- Power Supply Sequence Specification ①: Power Supply Sequence Specifications and Control Block Diagrams
- Power Supply Sequence Specification①: Sequence Operation at Power Turn-on
- Power Supply Sequence Specification①: Sequence Operation at Power Shutoff
- Power Supply Sequence Specification①: Example of Actual Circuit and Component Value Calculations
- Power Supply Sequence Specification①: Example of Actual Operations
- Power Supply Sequence Specification②:Power Supply Sequence Specifications and Control Block Diagrams
- Power Supply Sequence Specification②:Sequence Operation at Power Turn-on
- Power Supply Sequence Specification②: Sequence Operation at Power Shutoff
- Power Supply Sequence Specification②: Example of Actual Circuit and Component Value Calculations
- Power Supply Sequence Specification②: Example of Actual Operations
- Circuits to Implement Power Supply Sequences Using General-Purpose Power Supply ICs ーSummaryー
- Easy Stabilization/Optimization Methods for Linear Regulators – Introduction
Product Information
FAQ